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ABSTRACT
We tackle the problem of question answering directly on a large

document collection, combining simple “bag of words” passage

retrieval with a BERT-based reader for extracting answer spans.

In the context of this architecture, we present a data augmenta-

tion technique using distant supervision to automatically annotate

paragraphs as either positive or negative examples to supplement

existing training data, which are then used together to fine-tune

BERT. We explore a number of details that are critical to achiev-

ing high accuracy in this setup: the proper sequencing of different

datasets during fine-tuning, the balance between “difficult” vs. “easy”

examples, and different approaches to gathering negative examples.

Experimental results show that, with the appropriate settings, we

can achieve large gains in effectiveness on two English and two

Chinese QA datasets. We are able to achieve results at or near the

state of the art without any modeling advances, which once again

affirms the cliché “there’s no data like more data”.

CCS CONCEPTS
• Information systems→ Question answering.
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1 INTRODUCTION
BERT [6] exemplifies a large family of deep neural models that take

advantage of massive pretraining on language modeling tasks [16,

17]. With these models, researchers have demonstrated impressive

gains in a broad range of NLP tasks, from sentence classification to

paraphrase detection to sequence labeling.

Recently, Yang et al. [29] showed that combining a BERT-based

reader with passage retrieval using BM25 in a system called BERT-

serini yields a large improvement in question answering accuracy
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in a retrieval-based setting, identifying answers from a Wikipedia

corpus [4]. BERTserini adopts a simple architecture and a straight-

forward method to combine BERT with off-the-shelf retrieval tech-

niques, and has become a reference point for researchers working

on this problem [1, 7, 8, 13, 20, 26]. Our paper builds on BERTserini’s

basic design and explores how much further we can improve effec-

tiveness by data augmentation alone. We take advantage of distant

supervision techniques to gather “free” training data to fine-tune

BERT. Experiments show that, using the same reader model as Yang

et al. [29], our data augmentation techniques yield additional large

improvements in standard metrics. To illustrate the robustness of

our methods, we also demonstrate gains on another English QA

dataset and present results for two Chinese QA datasets that have

not to date been evaluated in a retrieval-based setting.

While data augmentation using distant supervision has, of course,

been studied by many researchers in the past, our work focuses

specifically on two under-explored aspects of retrieval-based ques-

tion answering. In particular, we make two contributions to the

understanding of distant supervision techniques in this context:

• First, most previous work on distant supervision focuses on gen-

erating positive examples. However, in a retrieval-based setting

where the reader consumes the output of passage retrieval, the

model will encounter many non-relevant passages, which means

that a data collection strategy focused only on positive examples

will be inadequate. We show that using existing datasets to iden-

tify negative training examples is critical to effectiveness, and

explore different strategies for gathering negative examples.

• Second, the literature provides little guidance on how to integrate

existing training data with data gathered via distant supervision

in the context of fine-tuning BERT for ranking. We show that a

naïve strategy of simply combining all data may not be the best

method. Instead, we propose a stage-wise approach to fine-tuning

BERT with heterogeneous data, beginning with the dataset that

is “furthest” from the test data and ending with the “closest”.

Combining our innovations, we are able to achieve effectiveness

at or near the state of the art on four question answering datasets.

One notable strength of our approach is that our results are ob-

tained without any model changes, which once again affirms the

cliché “there’s no data like more data”. Since data augmentation is

orthogonal to model improvements, our techniques can be applied

to future modeling advances.

2 RELATEDWORK AND METHODS
Our work tackles the retrieval-based variant of the question an-

swering problem, where the system is provided with a large cor-

pus of articles. This stands in contrast to reading comprehension

https://doi.org/10.1145/3366423.3380060
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Figure 1: Our two-stage architecture for retrieval-based
question answering, the same design as BERTserini [29].

datasets such as SQuAD [18], where the system works with a single

pre-determined document, or most QA benchmarks today such as

TrecQA [32], WikiQA [31], and MSMARCO passage reranking [2],

where the system is provided a list of candidate passages to choose

from. Our task definition, which combines a strong element of in-

formation retrieval, traces back to the Text Retrieval Conferences

(TRECs) in the late 1990s [23], but there is a recent resurgence of

interest in this formulation, starting with Chen et al. [4]. Following

this work, we have seen many papers on retrieval-based question

answering, and BERTserini is a typical two-stage pipeline that com-

bines keyword-based retrieval with BERT-based (re)ranking.

2.1 Basic Setup
In this work, we fix the underlying model and focus on data aug-

mentation techniques to explore how to best fine-tune BERT in a

retrieval-based multi-stage question answering pipeline. Following

BERTserini [29], we first use passage retrieval to identify relevant

paragraphs from Wikipedia using the Anserini IR toolkit [27, 28]

and then pass the paragraphs to a BERT reader for answer span

extraction (see Figure 1); hence the name of the system.

We adopted the “paragraph” setup in BERTserini [29]: the input

corpus, a Wikipedia dump, is pre-segmented into paragraphs at

indexing time, each of which is treated as a “document” for retrieval

purposes. The question is used as a “bag of words” query to retrieve

the top k candidate paragraphs using BM25 ranking.

During the inference stage, the retrieved paragraphs are fed into

the fine-tuned BERT reader, along with the original natural lan-

guage question. For each candidate paragraph, the reader selects the

best text span and provides a score. We also follow Yang et al. [29]

and remove the final softmax layer over different answer spans to

make the reader score comparable across the candidate paragraphs.

Finally, an aggregator combines the reader scores with the BM25

scores via linear interpolation:

S = (1 − µ) · SBM25 + µ · SBERT (1)

where µ ∈ [0, 1] is a hyperparameter to be tuned.

2.2 Distant Supervision
The roots of the distant supervision techniques we use trace back to

at least the 1990s [19, 33], although the term had not yet been coined.

Such techniques have recently become commonplace, especially as

a way to gather large amounts of labeled examples for data-hungry

neural networks and other machine learning algorithms. Specific

recent applications in question answering include Bordes et al. [3],

Chen et al. [4], Lin et al. [14], as well as Joshi et al. [9] for building

benchmark test collections. However, as we explain below, our

approach aims to address a number of under-explored issues that

are specific to the retrieval-based setting.

One main shortcoming of BERTserini as implemented by Yang

et al. [29] was that they only fine-tune BERT on the original SQuAD

dataset, which means that the BERT reader is exposed to an impov-

erished set of examples; all SQuAD data come from a total of only

442 documents. This contrasts with the diversity of paragraphs that

the model will likely encounter at inference time in the retrieval-

based setting, since they are selected from potentially millions of

articles. Also, the output of passage retrieval may contain many neg-

ative examples (i.e., paragraphs that don’t contain answers), which

does not accurately match the prevalence of answers in the original

training data. Additionally, when performing QA on Wikipedia

using a machine-reading comprehension dataset, we do not have

labels for most paragraphs (since they are not from the original

source documents). The solution, of course, is to fine-tune BERT

with labeled paragraphs of the type that it is likely to encounter at

inference time. Distant supervision can provide a bridge.

Starting from a source dataset comprising question–answer pairs

(for sample, SQuAD), we can create additional training examples

by fetching paragraphs from the corpus using the system’s own

passage retrieval algorithm (with the question as the query) and

automatically annotate these paragraphs based on the ground truth

answers provided in the source dataset. Using the system’s own

passage retrieval algorithm ensures that the model is exposed to

the types of input it will receive at inference time.

We denote a paragraph as a positive example if the ground truth

answer appears in it; otherwise we consider it a negative example.

We keep the best positive example for each question (i.e., the highest

BM25 score), and examined three different methods for selecting

negative examples:

• Top-down: We choose negative examples with the highest para-

graph scores from the retrieved paragraphs.

• Bottom-up: We choose negative examples with the lowest para-

graph scores from the retrieved paragraphs.

• Random: We randomly sample negative examples from the re-

trieved paragraphs.

Our intuition is that top-down sampling selects “hard” examples,

since the paragraphs have high BM25 scores, while bottom-up

sampling selects “easy” examples. Random sampling attempts to

obtain diversity.

One important hyperparameter is the number of negative exam-

ples to select for each positive example; ideally, this distribution

should match the actual prevalence of correct answers that the

reader encounters at test time, giving the model an accurate prior

for answer correctness.

Another important design decision is how to make use of both

the source data (denoted SRC) and the distantly-supervised data

(denoted DS). We refer to the training set of only positive aug-

mented examples as DS(+) and refer to the training set containing

both positive and negative examples as DS(±). Other than different

datasets we can use, there are three possibilities when considering

the fine-tuning order:



SQuAD TriviaQA CMRC DRCD

Train 87,599 87,622 10,321 26,936

Test 10,570 11,313 3,351 3,524

DS(+) 64,244 264,192 8,596 41,792

DS(±) 447,468 789,089 68,696 246,604

Table 1: Number of question–answer pairs in each dataset.
DS(+) and DS(±) refer to our augmented dataset with posi-
tive and positive as well as negative examples, respectively,
with the best setting from our main results.

• SRC + DS: Fine-tune BERT with all data, “lumped” together as a

single, larger training set. In practice, this means that the source

and augmented data are shuffled together.

• DS→ SRC: Fine-tune the reader in stages, first on the augmented

data and then on the source dataset.

• SRC → DS: Fine-tune the reader in stages, first on the source

dataset and then on the augmented data.

Our experiments explore the facets of distant supervision described

above: different strategies for gathering negative examples and the

proper sequencing of different datasets during fine-tuning. Results

show that these choices have a large impact on effectiveness.

3 EXPERIMENTAL SETUP
To demonstrate the generalizability of our data augmentation tech-

niques, we conducted experiments on two English datasets: SQuAD

(v1.1) and TriviaQA [9] (the unfiltered version). The 2016/12/21

dump of English Wikipedia provides the document collection from

which we are retrieving answers, following Chen et al. [4]. We also

examined two Chinese machine reading comprehension datasets:

CMRC [5] and DRCD [21]. CMRC is in simplified Chinese while

DRCD is in traditional Chinese. For Chinese, we used the 2018/12/01

dump of Chinese Wikipedia, tokenized with Lucene’s CJKAnalyzer
into overlapping bigrams. We applied hanziconv1 to transform the

corpus into simplified characters for CMRC and traditional charac-

ters for DRCD.

Following Yang et al. [29], to evaluate under a retrieval-based

setting, we simply disregard the ground truth paragraphs from

the original datasets and consider only the exact answer strings.

As in previous work, we use the exact match (EM) score and F1

score (at the token level) as evaluation metrics. In addition, to

examine the quality of retrieved paragraphs, we compute recall

(R), the fraction of questions for which the correct answer appears

in any retrieved paragraph. Note that this recall is not the same

as the token-level recall component in the F1 score. To make our

results comparable to BERTserini, we also use Anserini [27, 28]

for retrieval and rank the paragraphs using BM25 with the same

parameter settings (k1 = 0.9,b = 4). The retriever returns 100

paragraphs and then feeds them to the BERT reader.

Statistics for the datasets are shown in Table 1. Note the possi-

bly confusing terminology here: for SQuAD (as well as the other

datasets), what we use for testing is actually the public develop-

ment set (same as previous work). For reference, we also provide

statistics for our distantly-supervised data; these represent the best

1
https://pypi.org/project/hanziconv/0.2.1/

settings, corresponding to our main results in Tables 2 and 3, which

use a positive/negative ratio of 1:7, 1:3, 1:7, and 1:6, for each dataset,

respectively, with random sampling (see Section 4.2).

For model training, we begin with the pre-trained BERT-Base

model (uncased, 12-layer, 768-hidden, 12-heads, 110M parameters).

We use the pre-trained Chinese BERT-Base for the Chinese datasets.

All inputs are padded to 384 tokens; the learning rate is set to

3 × 10
−5

and all other default settings are used. For all datasets,

when applying stage-wise fine-tuning, we first fine-tune on the

source dataset (SRC) for two epochs, and then on the augmented

dataset for one epoch.

4 RESULTS
Main results on the two English datasets are shown in Table 2, along

with comparisons directly copied from previous papers. Our figures

are obtained from the dataset denoted DS(±) in Table 1; the training

regime is the best configuration for combining different datasets,

whichwill be discussed in the next section.
2
A few additional details:

for SQuAD, we include results directly copied from the original

BERTserini paper [29] (fine-tuning only on the source data, no data

augmentation). Since then, however, we have made a few improve-

ments, including engineering refinements and upgrading to a more

recent version of Lucene. In the remainder of this paper, BERT-

serini refers to our improved implementation. When our distant

supervision techniques were first proposed [30], we reported the

best known score on SQuAD that we were aware of. Since then,

however, the state of the art has further advanced, but those ap-

proaches take advantage of larger BERT models [1, 26], whereas

we continued to use BERT-Base. Main results on the two Chinese

datasets are shown in Table 3. To the best of our knowledge, there

is no previous work on these two datasets in the retrieval-based

setting, and therefore BERTserini is the only baseline available.

We can see that our distant supervision techniques and training

regime for exploiting the augmented datasets lead to large improve-

ments for all datasets, both in terms of exact match as well as F1.

Improvements in both English and Chinese suggest the generality

of our approach. The statistical significance of all improvements

(BERTserini + DS over BERTserini, across all four datasets) was

verified with a paired t-test (p << 0.01). Note that we are unable

to apply significance tests to the other conditions because we do

not have access to results from those systems.

In Figure 2, we show the effects of varying the number of para-

graphs k that is fed into the BERT reader for SQuAD (top) and

CMRC (bottom). We plot the following metrics:

(1) Top 1 Exact Match (EM): the top k paragraphs from the retriever

are fed to the reader, the reader extracts the best phrase in each

paragraph, and then the aggregator selects the best answer

among all the candidates. If the best answer matches the ground

truth, the system receives credit.

(2) Top k Exact Match (EM): the top k paragraphs from the retriever

are fed to the reader, which extracts the best phrase in each

paragraph. If any of these phrases matches the ground truth,

the system receives credit.

2
In later sections we present a number of detailed analyses and contrastive conditions

under slightly different experimental procedures, and so there is no exact one-to-one

correspondence between figures in the main results tables and subsequent results.

https://pypi.org/project/hanziconv/0.2.1/


SQuAD
Model EM F1 R

Dr.QA [4] 29.8 - -

R
3
[24] 29.1 37.5 -

Kratzwald and Feuerriegel [11] 29.8 - -

Par. R. [12] 30.2 - -

Minimal [15] 34.7 42.5 64.0

ORQA [13] 34.7 - 64.0

RankQA [10] 35.8 - -

DenSPI-Hybrid [20] 36.2 44.4 -

MUPPET [7] 39.3 46.2 -

BERTserini (2019) [29] 38.6 46.1 85.9

RE
3
QA-Large [8] 41.9 50.2 -

Multi-passage BERT-Base [26] 51.2 59.0 -

Multi-passage BERT-Large [26] 53.0 60.9 -

GraphQA BERT-Large (wwm) [1] 56.5 63.8 -

BERTserini 41.8 49.5 86.3

BERTserini + DS 51.2 59.4 86.3

TriviaQA
Model EM F1 R

ORQA [13] 47.2 - -

R
3
[24] 47.3 53.7 -

DS-QA [14] 48.7 56.3 -

Evidence Agg. [25] 50.6 57.3 -

BERTserini 51.0 56.3 83.7

BERTserini + DS 54.4 60.2 83.7

Table 2: Main results on the two English datasets.

CMRC
Model EM F1 R

BERTserini 44.5 60.9 86.5

BERTserini + DS 48.6 64.6 86.5

DRCD
Model EM F1 R

BERTserini 50.7 65.0 81.5

BERTserini + DS 55.4 67.7 81.5

Table 3: Main results on the two Chinese datasets.

(3) Recall: the fraction of questions in which at least one retrieved

passage contains the answer (which provides an upper bound

on scores with the current passage retrieval approach).

Looking at Figure 2: as expected, all scores increase as more can-

didate paragraphs are fed to the reader, similar to what Yang et al.

[29] observed. What is interesting, though, is to compare the effects

of data augmentation, which we show with dotted vs. solid lines;

note that the passage retriever (hence, recall) remains the same. For

SQuAD (top), we see that top 1 EM improves quite a bit, although

top k EM changes little. This suggests that distantly-supervised

data is helping the model extract better answer phrases—likely due

to improved context modeling—but isn’t fundamentally expanding
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Figure 2: Effects of the number of retrieved paragraphs k on
SQuAD (top) and CMRC (bottom).

the coverage of the reader. We note the same phenomenon in Chi-

nese (for CMRC, bottom). However, the gap here between top k
EM and upper bound recall is much larger, which means that the

passage retriever is finding relevant paragraphs, but the reader is

unable to identify the correct answer spans. We suspect that the

Chinese BERT model is weaker than the English BERT model,
3

and that the Chinese datasets lack diversity in both questions and

answers compared to those in English.

4.1 Fine-Tuning Order
As discussed in Section 2.2, having acquired the augmented data

with our distant supervision techniques, there are a number of

options for fine-tuning the model using all available data. Experi-

ments exploring these possibilities are presented in Table 4 for each

dataset. The rows marked SRC refer to fine-tuning with the source

data only, which is the same as the BERTserini baselines in Tables 2

and 3. While training with positive examples, denoted DS(+), im-

proves effectiveness as expected, an even larger gain comes from

leveraging positive and negative examples, denoted DS(±).4

3
The SRC-trained BERT-Base model achieves 80 EM and 88 F1 on SQuAD 1.1, while

only 65 EM and 83 F1 on CMRC. These results are comparable to Sun et al. [22].

4
Note that negative sampling here was performed using the top-down approach (see

next section), which is slightly less effective than the random sampling approach

presented in Tables 2 and 3; thus, these figures are not directly comparable.



Model EM F1 EM F1

SQuAD TriviaQA

SRC 41.8 49.5 51.0 56.3

DS(+) 44.0 51.4 48.2 53.6

DS(±) 48.7 56.5 54.4 60.2
SRC+DS(±) 45.7 53.5 53.1 58.6

DS(±) → SRC 47.4 55.0 49.8 55.9

SRC → DS(±) 50.2 58.2 53.7 59.3

CMRC DRCD

SRC 44.5 60.9 50.7 65.0

DS(+) 45.5 61.1 50.5 64.3

DS(±) 48.3 63.9 53.2 66.0

SRC+DS(±) 49.0 64.6 55.4 67.7
DS(±) → SRC 45.6 61.9 53.4 67.1

SRC → DS(±) 49.2 65.4 54.4 67.0

Table 4: Results of exploring different approaches to combin-
ing source and augmented training data on the four datasets.

The natural question is how to take advantage of both types

of data (source and augmented). The most obvious approach is

to simply lump both the source and augmented data together to

create a single, larger training set. This is shown in Table 4 as SRC

+ DS(±), and for three out of the four datasets, it is not the best

approach (we discuss the exception below). In fact, for both English

datasets, the SRC +DS(±) condition performs worse than just using

the augmented data alone, i.e., DS(±) beats SRC + DS(±).

We propose that heterogeneous datasets should be leveraged

in a stage-wise manner, starting with the dataset that is “furthest”

away from the test data. That is, we wish to take advantage of all

available data, but the last dataset we use to fine-tune BERT should

be “most like” the test data the model will encounter at evaluation

time. Since the augmented data is drawn from the same passages

that the system is ultimately evaluated on, we should fine-tune

on those data last. This condition is denoted SRC → DS(±), which

yields the best results for two of the datasets (SQuAD and CMRC);

it is the second-best condition for the other two datasets (TriviaQA

and DRCD). Note that if we swap the tuning order, DS(±)→ SRC,

effectiveness drops (and quite a bit in three of the four datasets),

which lends credence to our heuristic.

For two of the datasets, our proposed stage-wise fine-tuning

approach does not yield the highest effectiveness. With TriviaQA,

the best condition is to simply disregard the source dataset, i.e.,

fine-tune with the augmented data only. We believe this may be an

artifact of how the dataset was constructed to begin with: TriviaQA

source paragraphs are already the product of distant supervision

(on noisy web texts), which means that they are of lower quality to

begin with. Our data augmentation procedure actually yields higher
quality training data, since the examples are from Wikipedia and

thus better match the passages that the BERT reader encounters at

inference time.

For DRCD, we see that SRC + DS(±) is the most effective over-

all, which we explain by how the dataset is constructed. Accord-

ing to Shao et al. [21], the dataset was assembled by searching

SQuAD CMRC
EM F1 EM F1

Top-down 49.2 57.2 48.8 64.5

Bottom-up 46.8 54.9 48.6 65.2

Random 49.6 57.6 48.6 64.7

Table 5: Effects of different negative sampling strategies on
SQuAD and CMRC.

Wikipedia (10k paragraphs from 2.1k pages). In this case, the aug-

mented data are similar enough to the source data that lumping

them both together to create a single, larger dataset is the best

strategy. This observation is affirmed by the fact that flipping the

order of fine-tuning, DS(±) → SRC, yields only a small drop in

effectiveness (much less than on the other datasets).

While the best conditions appear to be idiosyncratic for two of

our datasets (artifacts of how they were constructed), we believe

that our proposed stage-wise tuning approachmakes intuitive sense.

Another way to think about using different datasets is in terms

of a very simple form of transfer learning. The stage-wise fine-

tuning strategy is essentially trying to transfer knowledge from

labeled data that is not drawn from the same distribution as the

test instances. We wish to take advantage of transfer effects, but

limit the scope of erroneous parameterization. Thus, it makes sense

not to intermingle heterogeneous, qualitatively different datasets,

but to fine-tune the model in distinct stages.

4.2 Negative Sampling Strategies
One key insight of our work is that negative sampling is critical to

the effectiveness of distant supervision techniques, particularly in

our retrieval-based setting where the reader is only exposed to the

output of the passage retriever. In this section, we present results

that explore different negative sampling strategies.

Table 5 shows the effectiveness of different negative sampling

strategies (see Section 2.2) on two datasets: SQuAD for English and

CMRC for Chinese. Due to space limitations, we limit our analyses

to these two datasets only. In order to better isolate the impact of

data augmentation, these experiments do not take advantage of the

source data, and so the figures are not directly comparable to the

main results in Tables 2 and 3. Recall that the top-down negative

sampling strategy selects “difficult” examples (i.e., those with high

BM25 scores); for English, this is more effective than bottom-up

sampling, which selects “easy” examples. However, results sug-

gest that random sampling beats both approaches, showing the

importance of selecting diverse examples. Interestingly, though,

for Chinese, the sampling strategy doesn’t make much of a differ-

ence. This was a curious finding that prompted us to examine the

retrieved paragraphs manually; as it turns out, passage retrieval

in Chinese does not produce many paragraphs that are relevant to

the topics discussed in the question, but do not contain the answer,

because of our simple bigram-based approach. In other words, all of

the negative examples are “easy”, regardless of sampling strategy,

and hence we observe little difference in effectiveness.

As we discussed in Section 2.2, the ratio between positive and

negative examples that are generated via our distant supervision



SQuAD CMRC
BERTserini BERTserini + DS BERTserini BERTserini + DS

Type percentage EM F1 EM F1 percentage EM F1 EM F1

Who 13.0% 43.1 48.6 52.9 (+22.7%) 59.3 (+22.0%) 8.0% 47.9 62.6 46.3 (−3.2%) 63.4 (+1.3%)

When 7.9% 46.8 54.7 56.9 (+21.6%) 65.0 (+18.8%) 6.0% 50.0 67.5 58.8 (+17.5%) 73.3 (+8.6%)

Where 4.7% 28.7 38.2 41.1 (+43.2%) 51.4 (+34.6%) 10.5% 43.6 61.3 52.2 (+19.7%) 67.1 (+9.4%)

What 54.8% 42.9 50.6 51.8 (+20.7%) 60.3 (+19.2%) 48.0% 40.8 55.8 44.3 (+8.6%) 59.2 (+6.2%)

Which 6.3% 46.1 53.5 58.6 (+27.1%) 65.8 (+23.0%) 13.2% 57.6 71.3 63.8 (+10.6%) 76.3 (+7.0%)

How 11.0% 36.6 44.5 45.0 (+23.0%) 52.5 (+18.0%) 8.4% 43.4 63.8 48.5 (+11.9%) 69.8 (+9.5%)

Why 1.4% 34.2 51.4 36.2 (+5.8%) 54.2 (+5.4%) 5.3% 34.3 55.5 32.6 (−5.1%) 53.9 (−2.8%)

Other 0.9% 28.9 49.5 40.0 (+38.4%) 52.6 (+6.3%) 0.4% 35.7 53.0 35.7 (+0.0%) 45.3 (−14.5%)

Table 6: Breakdown of effectiveness by question type for SQuAD (left) and CMRC (right).
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Figure 3: Effects of varying d , the positive–negative ratio of
examples, on SQuAD.

technique is an important hyperparameter. In Figure 3, we plot the

effect of this ratio d . That is, for every positive example, we select d
negative examples. We used a similar setup as the experiment above,

and therefore these results are also not directly comparable to the

main results in Tables 2 and 3. Furthermore, in order to experiment

with d < 1, we applied a slightly different approach to negative

sampling: Instead of pairing negative examples with positive ex-

amples (per Section 2.2), we first gathered all positive and negative

examples across all questions, and then performed the sampling on

those two groups given the ratio d . These results appear somewhat

noisy, but suggest that d > 2 yields good effectiveness—and from

the perspective of minimizing training time, we desire the smallest

d value that allows us to fully exploit distant supervision. The same

experiments on the other datasets yield similar conclusions.

4.3 Detailed Analyses
We conclude with detailed analyses. In Table 6, we break down

effectiveness by question type for SQuAD (left) and CMRC (right),

comparing the BERTserini baseline and the model trained with data

augmentation (corresponding to the main results tables). Question

classification in English is performed based on simple questionword

matching. For consistency, we translated all Chinese questions into

English with a state-of-the-art machine translation system, and

applied the same classification scheme as the English questions. We

manually examined the translations of the Chinese questions and

confirmed that they look reasonable.

For SQuAD, we see that effectiveness on “how” and “why” ques-

tions are lower than the other categories (which makes sense since

they are more difficult), but surprisingly the scores for “where”

questions are quite low as well. We see that data augmentation

improves effectiveness across the board, although gains from “why”

questions are quite limited—this is likely because the exact phrasing

of the ground truth answers for these questions are difficult to find.

For Chinese, “why” questions appear more difficult than the other

types (not surprising). Interestingly, we see that data augmentation

actually decreases effectiveness for some question types; however,

most categories do see large gains.

How is data augmentation improving the reader? At a high-level,

we believe that greater diversity in answers gives the reader a more

accurate model of answer contexts. For example, we have noticed an

artifact of how some questions are constructed in SQuAD: often, a

question that contains “what noun” is directly answered by “X noun”
in a text span. As a result, a model trained solely on SQuAD learns

(basically) to pattern match, and frequently marks the token before

the noun (i.e., X) as the answer, even in obviously incorrect contexts.

With distant supervision, this is avoided because of exposure to

sufficient answer diversity.

5 CONCLUSIONS
This paper explores the design space of distant supervision tech-

niques for retrieval-based question answering from Wikipedia

across two English and two Chinese datasets. Our two key in-

sights are to exploit heterogeneous data in stage-wise fine-tuning

and proper settings for negative sampling. A series of thorough

experiments explore the impact of these various aspects.

A noteworthy advantage of our approach is its simplicity and

the fact that our gains are demonstrated on a simple reader model.

This means that, essentially, gains come “for free”. Furthermore,

our techniques should be applicable to other neural models as well,

including improvements to the basic BERTserini model architecture

proposed by other researchers [1, 7, 8, 13, 20, 26]. These findings

confirm perhaps something that machine learning practitioners

already know too well: “there’s no data like more data”.



Question BERTserini BERTserini + DS

Super Bowl 50

decided the NFL

champion for what

season?

Super Bowl XXXVII was an American football game

between the American Football Conference (AFC)

champion Oakland Raiders and the National Football

Conference (NFC) champion Tampa Bay Buccaneers to

decide the National Football League (NFL) champion

for the 2002 season.

Super Bowl 50 decided the 2015 NFL Champion and

was played at Levi’s Stadium in Santa Clara, California

on Sunday, February 7, 2016.

How did Tesla

know he was being

struck by the

particle?

On 11 July 1934 the “New York Herald Tribune”

published an article on Tesla, in which he recalled an

event that would occasionally take place while

experimenting with his single-electrode vacuum tubes;

a minute particle would break off the cathode, pass out

of the tube, and physically strike him. “Tesla said he

could feel a sharp stinging pain where it entered his

body, and again at the place where it passed out.”

On 11 July 1934 the “New York Herald Tribune”

published an article on Tesla, in which he recalled an

event that would occasionally take place while

experimenting with his single-electrode vacuum tubes;

a minute particle would break off the cathode, pass out

of the tube, and physically strike him. “Tesla said he
could feel a sharp stinging pain where it entered
his body, and again at the place where it passed out.”

Table 7: Sample questions and answers.
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